
KCNN2(SK2) Rabbit Polyclonal Antibody(A244) Catalog No.: RA20243


Basic Information

Information	
Reactivity	H,M,R
Immunogen	Synthetic Peptide
Host	Rabbit
Isotype	IgG
Storage Buffer & Condition	1mg/ml in PBS, pH 7.4, containing 0.02% sodium azide and 50% glycerol.
Observed MW	70,26KD
Applications	Recommended Dilution
WB	1:1,000-2,000
WB IHC	1:1,000-2,000 1:100-200
IHC	

Reed Biotech Ltd

Experimental Data

Western blot analysis of 1)Rat BrainTissue, Immunohistochemical 2)Mouse Brain Tissue, 3)HepG2 with paraffin-embedded Hu KCNN2(SK2)Rabbit pAb diluted at 1:2,000. KCNN2(SK2)Rabbit p

Immunohistochemical analysis of paraffin-embedded Human BrainTissue using KCNN2(SK2)Rabbit pAb diluted at 1:200.

Background

Forms a voltage-independent potassium channel activated by intracellular calcium. Activation is followed by membrane hyperpolarization.