
Cav γ5 Rabbit Polyclonal Antibody(A199) Catalog No.: RA20145

Basic Information

Information	
Reactivity	H,M,R
Immunogen	Synthetic Peptide
Host	Rabbit
Isotype	IgG
Storage Buffer & Condition	1mg/ml in PBS, pH 7.4, containing 0.02% sodium azide and 50% glycerol.
Observed MW	35KD
Applications	Recommended Dilution
WB	1:500-1,000
WB	1:500-1,000
WB IHC	1:500-1,000

Western blot analysis of 1)Human Brain Tissue, 2)Mouse Brain Tissue, 3)Rat Brain Tissue with Cav γ 5 Rabbit pAb diluted at 1:2,000.

Immunohistochemical analysis of paraffin-embedded Rat Brain Tissue using Cav γ5 Rabbit pAb diluted at 1:200.

Background

The γ subunit is an integral membrane protein. The γ family consists of at least 8 members, which share a number of common structural features. CaV γ subunits inhibit CaV channel activity and modulate its activation and inactivation kinetics.