
P63-α Mouse Monoclonal Antibody (4C12) Catalog No.: RA10254

Basic Information

Information	
Reactivity	H,M,R
Immunogen	Synthetic Peptide
Host	Mouse
Isotype	IgG1
Storage Buffer & Condition	1mg/ml in PBS, pH 7.4, containing 0.02% sodium azide and 50% glycerol.
Observed MW	50-80KD
Applications	Recommended Dilution
Applications WB	Recommended Dilution 1:1,000-2,000
WB	

Experimental Data

Western blot analysis of 1)A431 Cell Lysate, 2)3T3 Cell Lysate , 3)PC-12 Cell Lysate using P63- α Mouse mAb diluted at 1:2000.

Background

p63 can induce p53-responsive genes and apoptosis,mutation of p63 rarely results in tumors . Research investigators frequently observe amplification of the p63 gene in squamous cell carcinomas of the lung,head and neck . The p63 gene contains an alternative transcription initiation site that yields a 40 kDa δ Np63 lacking the transactivation domain,and alternative splicing at the carboxy-terminus yields the α , β ,and γ isoforms .